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State-space models

General form:{
yt = Mtαt + dt + ut , Measurement equation
αt = Ttαt−1 + ct + Rtvt , Transition equation

with yt ∈ RN , αt ∈ Rm (the state-vector), (ut) and (vt) are two
sequences of independent variables, respectively valued in RN and
RK such that

E[ut ] = 0N , E[vt ] = 0K , Var(ut) = Ht , Var(vt) = Qt .

Mt , Tt and Rt are non-random N × n, m ×m and m × K
matrices, dt ∈ RN , ct ∈ Rm are non-random vectors.
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Objectives of the Kalmnan filter

The Kalman filter (Kalman, 1960) is an algorithm used for

(i) predicting the value of the state vector at time t, given
observations y1, · · · , yt−1.

(ii) filtering, that is, estimating αt given observations y1, · · · , yt .

(iii) smoothing, that is, estimating αt given observations
y1, · · · , yT , with T > t.
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Assumptions

To implement this algorithm, we need further assumptions:
normality and independence:

(ut , vt) is an independent Gaussian sequence such that

P(ut ,vt)′ = NRN+K

((
0
0

)
,

(
Ht 0
0 Qt

))
The initial distribution of the state vector is Gaussian and is
independent from (ut) and (vt):

Pα0 = NRK (a0,P0), α0 ⊥ (ut), (vt).

The matrix Ht is positive definite (for any t).
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Notations: conditional moments w.r.t. bservations

For t ≥ 1, then

αt|t = E[αt |y1, · · · , yt ],
Pt|t = Var(αt |y1, · · · , yt).

For t > 1, then

αt|t−1 = E[αt |y1, · · · , yt−1],
Pt|t−1 = Var(αt |y1, · · · , yt−1).

Let
α1|0 = E[α1], P1|0 = Var(α1).

The objective consists of computing these sequences recursively.
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First step

Taking the conditional expectation w.r.t. y1, · · · , yt−1 in the
transition equation gives

αt|t−1 = Ttαt−1|t−1 + ct ,

and by taking the conditional variance

Pt|t−1 = TtPt−1|t−1T
′
t + RtQtR

′
t .

Both equations are called prediction equations. Hence the
conditional moments of yt are

yt|t−1 := E[yt |y1, · · · , yt−1] = Mtαt|t−1 + dt ,
Ft|t−1 := Var(yt |y1, · · · , yt−1) = MtPt|t−1M

′
t + Ht .

We also have

Cov(αt , yt |y1, · · · , yt−1) = Pt|t−1M
′
t .
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Conditional distributions of the components of a Gaussian
vector

Let

P(X ,Y )′ = NRdX×dY

((
µX
µY

)
,

(
ΣXX ΣXY

ΣYX ΣYY

))
.

Then the distribution of X conditional on Y = y is

PY=y
X = NRdX (µX + ΣXY Σ−1

YY (y − µY ),ΣXX − ΣXY Σ−1
YY ΣYX ).
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Conditional law of (yt , αt)

We have

(yt , αt , yt−1, · · · , y1) = F (α0, ut , · · · , u1, vt , · · · , v1),

where F (.) is a linear mapping.

Consequently, the vector (yt , αt , yt−1, · · · , y1) is gaussian.

The law of (yt , αt) conditional on y1, · · · , yt−1 is also gaussian.
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Second step: updating the prediction formulas

New observation at time t: yt .
αt is gaussian conditionally on y1, · · · , yt−1 and yt :

αt|t = αt|t−1 + Pt|t−1M
′
tF
−1
t|t−1(yt −Mtαt|t−1 − dt),

Pt|t = Pt|t−1 − Pt|t−1M
′
tF
−1
t|t−1MtPt|t−1.

These equations are called updating equations.
Remark: The normality assumption is only used in the second step.
Initialization: At time 1, the conditional moments coincide with
the unconditional ones, ie

α1|0 = T1a0 + c1, P1|0 = T1P0T
′
1 + R1Q1R

′
1.
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Recursive computations

The sequences (αt|t1
), (Pt|t−1), (αt|t) and (Pt|t) are computed

recursively for t = 1, · · · ,T .
Initial values:

α1|0 = T1a0 + c1, P1|0 = T1P0T
′
1 + R1Q1R

′
1.

Prediction equations:

αt|t−1 = Ttαt−1|t−1 + ct ,
Pt|t−1 = TtPt−1|t−1T

′
t + RtQtR

′
t ,

Ft|t−1 = MtPt|t−1M
′
t + Ht .

Updating equations: using also yt , ie

αt|t = αt|t−1 + Pt|t−1M
′
tF
−1
t|t−1(yt −Mtαt|t−1 − dt),

Pt|t = Pt|t−1 − Pt|t−1M
′
tF
−1
t|t−1MtPt|t−1.
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Direct computation of (αt|t−1) and (Pt|t−1)

{
αt|t−1 = Ttαt−1|t−2 + ct + Kt(yt −Mt−1 − αt−1|t−2 − dt−1),
Pt|t−1 = TtPt−1|t−2T

′
t − KtFt−1|t−2K

′
t + RtQtR

′
t ,

where
Ft−1|t−2 = Mt−1Pt−1|t−2M

′
t−1 + Ht−1,

Kt = TtPt−1|t−2M
′
t−1F

−1
t−1|t−2.

Kt is the gain matrix.
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Correlated noise sequences

We can relax the assumption regarding the noncorrelation between
the noises:

P(ut ,vt)′ = NRN+K

((
0
0

)
,

(
Ht G ′t
Gt Qt

))
.

Prediction equations:

αt|t−1 = Ttαt−1|t−1 + ct , Pt|t−1 = TtPt−1|t−1T
′
t + RtQtR

′
t ,

Ft|t−1 = MtPt|t−1M
′
t + Ht + MtRtGt + G ′tR

′
tM
′
t .

Updating equations:

αt|t = αt|t−1 + (Pt|t−1M
′
t + RtGt)F

−1
t|t−1(yt −Mtαt|t−1 − dt),

Pt|t = Pt|t−1 − (Pt|t−1M
′
t + RtGt)F

−1
t|t−1(MtPt|t−1 + G ′tR

′
t).
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Can the normality assumption be relaxed?

For random vectors X ∈ L2(Rm) and Y ∈ Rn, the conditional
expectation E[X |Y ] is characterized by

‖X − E[X |Y ]‖2
2 = min

ϕ∈Φ
‖X − ϕ(Y )‖2

2,

where Φ is the set of measurable functions ϕ : Rn 7→ Rm such that
ϕ(Y ) ∈ L2(Rn).

The linear conditional expectation EL[X |Y ] is characterized by the
same program but with ϕ linear, ie

‖X − EL[X |Y ]‖2
2 = min

A,b
‖X − AY − b‖2

2.

For gaussian vectors, the two conditional expectations coincide.
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Can the normality assumption be relaxed?

The linear conditional expectation only depends on the L2

structure of (X ,Y ).
It follows that

EL[X |Y ] = µX + ΣXXΣ−1
YY (Y − µY ).

Without the gaussian assumption, the Kalman filter provides the
linear prediction

EL[yt |y1, · · · , yt−1] = Mtαt|t−1 + dt ,

and the variance of the prediction error

Var(yt − EL[yt |y1, · · · , yt−1]) = Ft|t−1 = MtPt|t−1M
′
t + Ht .
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Prediction

The Kalman filter can be used to predict at any horizon.
To simplify, let ∀t, ct = dt = 0, Tt = T and Mt = M:{

yt = Mαt + ut ,
αt = Tαt−1 + Rtvt .

For any h ≥ 0, then

αt+h = T h+1αt−1 +
h∑

i=0

T h−iRt+ivt+i ,

then

αt+h|t−1 = E[αt+h|y1, · · · , yt−1] = T h+1αt−1|t−1.
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Prediction

The variance of the prediction error at horizon h + 1 is

Pt+h|t−1 = Var(αt+h − αt+h|t−1)

= T h+1Pt−1|t−1(T h+1)′ +
h∑

i=0
T h−iRt+iQt+i (T

h−iRt+i )
′.

Moreover, yt+h = Mαt+h + ut+h, and consequently

yt+h|t−1 = E[yt+h|y1, · · · , yt−1] = Mαt+h|t−1 = MT h+1αt−1|t−1.

The prediction error is
yt+h − yt+h|t−1 = M(αt+h − αt+h|t−1) + ut+h, and its variance is

Var(yt+h − yt+h|t−1) = MPt+h|t−1M
′ + Ht+h.

17/34



General form of the filter
Statistical inference

Prediction and updating formulas
Prediction at any horizon and smoothing

Smoothing

The updating formula provides the filtered value αt|t of αt .

For certain applications, it is important to smooth αt using the
posterior observations.

Let

αt|T = E[αt |y1, · · · , yT ], Pt|T = Var(αt |y1, · · · , yT ).
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Steps for computing αt|T

(i) E[αt , αt+1|y1, · · · , yt ] (Already known).
⇓ Using the normality.

(ii) E[αt |y1, · · · , yt , αt+1]
⇓ Using a Lemma.

(iii) E[αt |y1, · · · , yt , yt+1, · · · , yT , αt+1]
⇓ By deconditioning.

(iv) E[yt |y1, · · · , yT ].

19/34



General form of the filter
Statistical inference

Prediction and updating formulas
Prediction at any horizon and smoothing

Algorithm

The algorithm is initialized at αT |T and is used in a descending
recurrence:

αt|T = αt|t + F̄t(αt+1|T − αt+1|t), t < T ,

and
Pt|T = Pt|t + F̄t(Pt+1|T − Pt+1|t)F̄

′
t , t < T ,

with
F̄t = Pt|tT

′
t+1P

−1
t+1|t , t < T .
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Sketch of the proof (1)

Normality assumption

Pαt+1,y1,··· ,yt
αt is Gaussian with

E[αt |αt+1, y1, · · · , yt ] = αt|t + Pt|tT
′
t+1P

−1
t+1|t(αt+1 − αt+1|t),

since

Cov(αt , αt+1|y1, · · · , yt) = Cov(αt ,Tt+1αt |y1, · · · , yt) = Pt|tT
′
t+1.
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Sketch of the proof (2)

E[αt |αt+1, y1, · · · , yT ] = E[αt |αt+1, y1, · · · , yt ].

yt+1 = f1(αt+1, ut+1),
yt+j = fj(αt+1, ut+j , vt+j , · · · , vt+2), j ≥ 2,

with each fj(.) linear functions. We have

αt = E[αt |y1, · · · , yt , αt+1] + et , et ⊥ (y1, · · · , yt , αt+1).

Besides

et = g(αt , y1, · · · , yt , αt+1) ⇒ et ⊥ {(ut+j)j≥1, (vt+j)j≥2}
⇒ et ⊥ yt+j for j ≥ 1
⇒ E[et |y1, · · · , yT , αt+1] = 0.
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Sketch of the proof (3)

Consequently, we obtain

E[αt |αt+1, y1, · · · , yt , yt+1, · · · , yT ] = αt|t + F̄t(αt+1 − αt+1|t).

By deconditioning with respect to αt+1, we get

αt|T = αt|t + F̄t(αt+1|T − αt+1|t), t < T .
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Sketch of the proof (4): variance of the smoothing error

αt − αt|T = αt − αt|t − F̄t(αt+1|T − αt+1|t)
⇒ αt − αt|T + F̄tαt+1|T = αt − αt|t + F̄tαt+1|t
⇒ Var(αt − αt|n) + F̄tVar(αt+1|n)F̄ ′

t = Var(αt − αt|t) + F̄tVar(αt+1|t)F̄
′
t .

We have Cov(αt+1, αt+1|T ) = Var(αt+1|T ). Consequently

Var(αt+1|T − αt+1) = Var(αt+1|T ) + Var(αt+1)
− Cov(αt+1|T , αt+1)− Cov(αt+1, αt+1|T )
= Var(αt+1)− Var(αt+1|T ).

And Var(αt+1|t − αt+1) = Var(αt+1)− Var(αt+1|t). Hence

Var(αt+1|T−αt+1)−Var(αt+1|t−αt+1) = Var(αt+1|t)−Var(αt+1|T ).
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Sketch of the proof (5): variance of the smoothing error

Var(αt+1|T−αt+1)−Var(αt+1|t−αt+1) = Var(αt+1|t)−Var(αt+1|T ).

Now

Pt+1|t = Var(αt+1 − αt+1|t) = Var(αt+1)− Var(αt+1|t),
Pt|T = Var(αt − αt|T ) = Var(αt)− Var(αt|T ),
Pt|t = Var(αt − αt|t) = Var(αt)− Var(αt|t).
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Parametric model

Suppose the model is parameterized by θ ∈ Θ ⊂ Rd . Then{
yt = M(θ)αt + d(θ) + ut ,
αt = T (θ)αt−1 + c(θ) + R(θ)vt ,

where (
ut
vt

)
= NRN+K (

(
0
0

)
,

(
H(θ) 0

0 Q(θ)

)
).

We observe y1, · · · , yT and for some given functions
M, d ,T , c ,H,Q, the problem consists in estimating θ.
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Likelihood function

Inital values: ε1(θ) and F1(θ), the Gaussian likelihood corresponds
to

LT (θ) = LT (y1, · · · , yT ; θ)

=
T∏
t=1

1
√

2π|Ft(θ)|
1
2

exp{−
1

2
ε′t(θ)F ′t|t−1εt(θ)},

with

εt(θ) = yt − Eθ[yt |y1, · · · , yt−1] = yt − yt|t−1(θ),
Ft|t−1(θ) = Varθ(yt |y1, · · · , yt−1).
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M-estimator

A M-estimator (MLE) of θ satisfies the optimization problem

θ̂T = arg max
θ∈Θ

LT (θ)

⇔ θ̂T = arg min
θ∈Θ

{− log(LT (θ))}

= arg min
θ∈Θ

1

T

T∑
t=1

l(yt , · · · , y1; θ),

such that

l(yt , · · · , y1; θ) = ε′t(θ)F−1
t|t−1(θ)εt(θ) + log(|Ft|t−1(θ)|).
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Kalman filtering

The Kalman filter enables to compute εt(θ) and Ft|t−1(θ) for any
θ.

Numerical procedure to solve the problem: Newton-Raphson
(several approximations of the Hessian), stochastic algorithm.

The theoretical properties of the estimator require additional
assumptions regarding the model.
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Application: MA(1)

Let
yt = µ+ εt + bεt−1,

with (εt) a white noise with variance σ2. The state-space
representation is {

yt = µ+ Mαt ,
αt = Tαt−1 + (εt , 0)′,

with M = (1, b), αt = (εt , εt−1)′ and T =

(
0 0
1 0

)
. Regarding the

general state space model:

dt = µ, ut = 0, ct = (0, 0)′, vt = (εt , 0)′,Ht = 0,Qt =

(
σ2 0
0 0

)
.
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Et−1[yt ] = µ+ bεt−1|t−1.

Vart−1(yt) = σ2 + b2pt−1, pt−1 = Var(εt−1|t−1).

P|y1,··· ,yt−1

(yt ,εt)′
= NR2(

(
µ+ bεt−1|t−1

0

)
,

(
σ2 + b2pt−1 σ2

σ2 σ2

)
).

We then obtain
εt|t =

σ2

σ2 + b2pt−1
(yt − bεt−1|t−1 − µ), t ≥ 1,

pt = σ2 −
σ4

σ2 + b2pt−1
, t ≥ 1,

with initial values ε0|0 = 0 and p0 = σ2.
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Asymptotic behavior of (pt) and εt|t

When |b| < 1, then

lim
t→∞

pt = lim
t→∞

E[(εt − εt|t)2] = 0.

This implies
εt − εt|t → 0.

This implies that we can approximate εt for t large enough.
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Estimation of the MA(1)

Let θ = (µ, b, σ2)′. The M-estimator minimizes

− log(LT (θ)) =
1

T

T∑
t=1

yt − µ− bεt−1|t−1

σ2 + b2pt−1
+ log |σ2 + b2pt−1|,

where pt−1 and εt−1|t−1 are computed using the Kalman filter.
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